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Abstract. An important goal in applications such as photogrammetry is precise
kinematic state estimation (position, orientation, and velocity) of complex moving
objects, given a sequence of images. Currently, no method achieves the precision
and accuracy of manual tracking under difficult real-world conditions. In this work,
we describe a promising new direction of research that processes the 3D datacube
formed from the sequence of images and uses edge detectors to validate position hy-
potheses. We propose a variety of new 3D edge/surface detectors, including new vari-
ants of wavelet- and shearlet-based detectors and hybrid 3D detectors that provide
computational efficiency. The edge detectors tend to produce broad edges, increasing
the uncertainty in the state estimates. We overcome this limitation by finding the
best match of the edge image from the 3D data to edge images derived from differ-
ent state hypotheses. We demonstrate that our new 3D state trackers outperform
those that only use 2D information, even under the challenge of changing lighting
conditions.

1 Introduction

When cameras record a sequence of observations of an object moving in the
field of view, we can try to track that object precisely. Complex object mo-
tion and complicated shape increase the difficulty of this type of tracking.
Multiple target features on the object can be selected, as shown in Fig. 1,
in order to accurately fit the geometry and represent motion through space.
It is important to have enough features to reliably represent the object and
the motion, which means, for example, additional features if the object has
fins or sharp curves. Other factors, including noise, clutter, and illumination
variations, also make tracking difficult, since these change image intensities in
complicated ways. In addition, low contrast image intensities make it difficult
to discern an image feature from the background.
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Fig. 1. Circular and bowtie-shaped features on objects to be tracked.

Very precise tracking is needed in photogrammetry, where the goal is to
estimate the three-dimensional rigid-body kinematics of objects. With preci-
sion, we are concerned with a deviation from the target center that is relatively
constant from frame to frame. A nearly constant deviation is more precise.
Estimation accuracy will refer to the particular magnitude of deviation from
a chosen standard. For real-world data, the chosen standard will depend on
how well a human can estimate the image feature’s center point. Typical tol-
erances require the object state parameters to be measurable to within one
inch for Cartesian position and within one degree for Euler rotations. Tracking
in 2D image space must therefore be accurate to within 2 pixels on average.
Tracking accuracy will also depend on the camera’s resolution influenced by
the distance and orientation of the image feature with respect to the camera’s
field of view, and the camera’s specific performance characteristics.

1.1 Previous Work in Tracking

Most methods that aim to estimate the kinematic state are feature-based
searches that minimize a cost function that generates the sum of squared dis-
tances between chosen projected points and their corresponding observations
from a particular image sequence (see [24] for more details). In practice, a two
dimensional feature tracker such as the Kanade-Lucas tracker [16] or other
correlation based methods are used to collect observations while maintaining
required correspondences with the chosen locations on the three dimensional
object.

Good techniques for general tracking include those provided by Lee et
al. [14] and subspace methods for face tracking such as those in [1], [4], and
[28]. Video-based tracking methods such as those provided in [32],[11], and
[15] are also effective. Despite substantial progress in tracking algorithms,
however, no single method has achieved the precision of manual tracking in
photogrammetry. Most approaches to this particular kind of tracking prob-
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lem have made use of edge detectors. Meaningful changes in edges are the
fundamental criteria for distinguishing image features from the background.
This is because the tracker can use the boundary of the feature to precisely
register its orientation and position. At first glance, this may seem to be a
complete solution to this tracking problem, but edge detectors can produce an
estimated edge that is nonuniform in thickness, making it difficult to estimate
critical attributes of the feature, such as its center and its velocity. In this
work we use the edge detector to validate position estimates rather than to
infer them.

1.2 Previous Work in Edge Detection

Traditional edge detection is performed with a single image I recorded at
positions P = {(i, j), i = 1, . . . ,m, j = 1, . . . , n}. Given a threshold h > 0,
the output of the edge detection process is a set of edge locations PE ⊆ P
and an edge image IE defined by

IE(i, j) =

{
1 (i, j) ∈ PE ,

0 (i, j) ∈ P\PE .
(1)

Mathematically, we define

PE = {p ∈ P : |∇I(p)| ≥ h} . (2)

The image gradient ∇I(p) cannot be computed exactly, and edge detection
algorithms differ in how they approximate this quantity.

There are many approaches to edge detection, including one based on
computing eigenvalues of an autocovariance matrix to discover when the power
spectrum of a function is slowly decreasing [5]. Perhaps the most widely used
2D edge detector is that due to Canny [3]. It is based on approximating the
image gradient through convolution of the image with a filter formed from
the derivative of a Gaussian. The algorithm depends on a single parameter
σc, the standard deviation of the Gaussian

gσc(x, y) = exp (−(x2 + y2)/(2σ2
c )), (3)

which effectively sets the scale for the smoothing of the image. The Canny
algorithm is quite fast and is effective for simple shapes if σc is tuned to
the image and the noise conditions, but this is not always possible. Fig. 2
shows the results of applying Matlab’s edge algorithm using the Canny
edge detector with various choices of σ, to the noisy image shown in the top
center. Smoothing at a single scale, i.e., with a single value of σ, makes it
difficult to balance noise suppression with feature loss.

A further complication comes from choosing the correct thresholds that
separate image features from the background or noise. Often one must man-
ually adjust parameters until the method produces helpful results. The end
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True Image Noisy Image Canny: default

Canny, sigma = 2.0 Canny, sigma = 4.0 Canny, sigma = 6.0

Fig. 2. Results of Matlab’s edge algorithm using the Canny edge detector with
various choices of sigma. The pixel values in the true image are in the range [0, 1],
and the standard deviation of the added noise is 0.4.

result can be acceptable, but the level of human intervention is not satisfactory
for automatic tracking applications.

A 2D wavelet edge detector [18, 19] overcomes the single-scale smoothing
limitation of the Canny algorithm. The wavelet transform [30] provides a
representation of an image using a set of basis functions that resolve detail
at multiple scales and thus can reveal edge information at various levels of
smoothing. Very efficient numerical implementations of the wavelet transform
[17] make it practical. It can be much more effective than the Canny algorithm
for complicated shapes, but because the wavelets are isotropic, it still has
difficulty distinguishing close edges, crossing edges, and sharp changes in edge
curvature. To resolve such cases, basis functions that have a sharp directional
orientation are needed. One solution is to replace the scalable collection of
isotropic Gaussian filters gσc

used in the Canny algorithm with a family of
steerable and scalable anisotropic Gaussian filters [8]

Ga1,a2,θ(x1, x2) = a
−1/2
1 a

−1/2
2 Rθ G(a−11 x1, a

−1
2 x2),

where a1, a2 > 0, Rθ is the rotation matrix for angle θ, and G is a Gaussian
basis function parametrized by a−11 x1 and a−12 x2. The design and implemen-
tation of such filters is computationally involved, and the justification is es-
sentially intuitive, lacking theory to prescribe parameters that best capture
edges.

The shearlet transform provides this theory [13]. It provides a sparse di-
rectional representation [13, 29] key to obtaining a good edge detector. It is
an invertible transform that relies on a set of analyzing functions (direction-
ally oriented filters) that partition the frequency space at different scales and
orientations. Knowing from mathematical analysis how the magnitudes at the
edges change in this representation with respect to scale and shear (see [12]
and [10]), a method for detecting edges and their orientation was given in
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[29]. The result is an improved capability to successfully detect subtle inten-
sity differences and complicated object shapes.

All of these 2D methods have 3D counterparts that can be used for movies,
sequences of images. Monga and Deriche [21] developed one of the first 3D
Canny detectors, using separable Gaussians for smoothing. They applied their
method to magnetic resonance and echographic volumetric data. Monga and
Benayoun [20] extended the state of the art mathematically by using partial
derivatives to treat the 3D image as a hypersurface in 4-dimensional space.
They computed the curvatures at designated edge points using the partial
derivatives of the image but did not obtain directional information. Brejl and
Sonka [2] designed a directional 3D edge detector. Weiping and Hauzhong [27]
used 3D wavelets to detect cerebral vessels in magnetic resonance angiograms
(MRA). In [25] and [23], we proposed using the 3D shearlet transform for
edge/surface detection and demonstrated its advantages over other methods
in distinguishing high-curvature edges in low SNR conditions. It should be
pointed out that this early 3D shearlet-based edge detector [25] is different
from the one proposed in this work, which makes more explicit use of the
analytic properties of the shearlet transform at surfaces and edges.

We believe that edge detection is much improved by including the time
dimension, so we use 3D detectors. Previously, 3D detectors for tracking have
been investigated in [6] and [31]. However, these are only for point features
and are not suitable for our purpose. Another breakthrough in our approach
is to make use of robust sparse and directional filtering concepts such as those
provided in [24], [6], and [31].

1.3 Outline and Contributions

In Section 2, we discuss the tracking problem and the data. We then make
several contributions.

• Section 3 focusses on new 3D edge detectors.
– We develop new variants of 3D wavelet- and shearlet-based edge de-

tection algorithms. We present a new 3D shearlet transform algorithm
that is better suited to edge/surface detection than the version devel-
oped in [22]. This new algorithm exploits the theory provided in [9]
and contains extensions as well as important improvements over the
algorithms developed in [29] for the purpose of feature tracking.

– With efficiency in mind, we devise inexpensive but effective hybrids,
combining results of 2D wavelet, shearlet, or Canny edge detectors on
x− y, y− t, and x− t slices, where x and y are spacial dimensions and
t denotes time.

– We demonstrate the effectiveness of these edge detection algorithms,
but show that they are not adequate for precise tracking.

• In Section 4 we propose a totally new approach to tracking, using edge
detectors to validate rather than generate state hypotheses, thus avoiding
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Fig. 3. Three frames from the orbiting ball movie.

Fig. 4. Patch containing the disk (left) is inserted into a black background to create
a noise-free frame of the movie (right).

the uncertainty imposed by broad estimates of edges, and in Section 5 we
demonstrate the effectiveness of our tracking ideas.

We draw conclusions in Section 6.
The edge detection algorithms described here were used by us in [26].

Matlab software implementing these algorithms is available at http://www.
cs.umd.edu/users/oleary/software.

Fig. 5. Three frames from an orbiting bow-tie movie with rotation and illumination
changes.

Fig. 6. Patches containing a bow-tie (left), a rotated bow-tie (middle), and a shaded
rotated bow-tie (right).

2 The Data

The tracking problem starts with an observed image sequence (movie) that
captures 2D snapshot information about 3D objects moving in the camera’s
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field of view. We present two test problems that illustrate some of the diffi-
culties in tracking a single feature from Fig. 1. Tracking of multiple features
can be done in parallel.

For our first test problem, a camera records a movie of a 3D ball of radius
r whose position in the sequence of 2D images describes a circular orbit at
radius R about the center pixel. Each image frame in the movie looks like
a white disk on a black background, moved via translation, with the center
(xj , yj) of the disk at time tj , relative to the center of the image, given by

xj = bR cos(α(tj))c, (4)

yj = bR sin(α(tj)c, (5)

where α(tj) is the angle defining the position of the object at time t.
Three frames from the resulting orbiting ball movie are shown in Fig. 3.

We chose the diameter of the disk to be an odd number of pixels so that
in generating the data we can center it on the nearest pixel. The movie Ĩ is
stored in an m ×m × ` array, with m2 = 1572 pixels per frame and ` = 30
frames. We generate the frames of the movie by inserting a (2r+ 3)× (2r+ 3)
patch of pixels containing the disk into a black (zero) frame of size m×m, as
shown in Fig. 4.

Our second test problem, with sample frames shown in Fig. 5, is gener-
ated in a similar way, but uses a bow-tie patch, shown in Fig. 6 (left), that
orbits about the center of the frame but also rotates about its own center
point, as illustrated in Fig. 6 (middle). To perform rotation, we remap each
pixel in the patch to its rotated position using bilinear interpolation. We also
use this example to investigate changes in illumination. This is accomplished
by generating a row vector g of increasing values in the range [0.05, 2] with
dimension equal to that of the patch. The illumination matrix is then defined
as L = gTg. The shaded object is obtained by elementwise multiplication of
the patch P by L:

S = P. ∗ L . (6)

This is performed after rotation and produces a result like that shown on the
right in Fig. 6.

We assume that we know the position of the object in the first frame of
the movie. To study the robustness of our algorithms, we add white noise
(independent normally distributed samples for each pixel) to the frames. We
use our methods to estimate the position of the center of the ball or bow-tie
and, for the bow-tie, its rotation angle, as a function of time. It is useful (but
more difficult) to estimate the velocity of the object, too. In the next section
we introduce 3D edge detectors that provide an important tool in making
these estimates.
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3 3D Edge Detectors

In this section we provide a brief description of how the 3D Canny, 3D wavelet,
new 3D shearlet, and the new hybrid edge detectors identify edges.

The edge estimates produced by any of these algorithms can be refined by
two well-known methods discussed in standard texts. Nonmaximal suppression
labels a voxel as an element of the edge surface if its estimated gradient
magnitude is at least h and if the magnitude is greater than at least one
of its neighboring pairs. This can be applied in 3D or, to save time, in 2D,
comparing each pixel to its neighboring pairs in the compass directions N-S, E-
W, NE-SW, and NW-SE. Hysteresis thresholding identifies a voxel as a strong
edge voxel if its gradient magnitude is greater than a threshold h. It is also
identified as an edge voxel if it is connected to a strong edge and its gradient
magnitude is larger than a threshold hlow and larger than the magnitude of
each of its two neighbors in at least one of the compass directions. This, too,
can be applied in 2D or 3D.

3.1 3D Canny Edge Detection

The 3D Canny algorithm (Algorithm 1) makes use of the 3D Gaussian low
pass filter

g3D
σ = exp (−(x2 + y2 + t2)/(2σ2)), (7)

where σ is the standard deviation for the Gaussian. After convolution with
this filter, it then uses convolution with a discretization of the partial deriva-
tives dg3Dσ,x, dg3Dσ,y, and dg3Dσ,t to estimate derivatives of the smoothed image
sequence. It operates at a single scale, determined by the choice of σ, and
produces estimates of the derivatives at the voxel centers.

Algorithm 1 The 3D Canny Edge Detection Algorithm.

1: Input: Raw image sequence Ĩ and parameter σ.
2: Output: (∇Ĩx,∇Ĩy,∇Ĩt), estimates of the gradient for each pixel in the input.
3: Compute the smoothed sequence Ĩs = Ĩ ∗ g3D

σ .
4: Compute horizontal derivative estimate ∇Ĩx = Ĩs ∗ dg3Dσ,x.

5: Compute vertical derivative estimate ∇Ĩy = Ĩs ∗ dg3D
σ,y.

6: Compute time derivative estimate ∇Ĩt = Ĩs ∗ dg3D
σ,t .

3.2 3D Wavelet Edge Detection

A wavelet representation is a multiscale representation that allows us to over-
come the problem of choosing an appropriate scale parameter σ. Given a func-
tion f in L2(R3) and an appropriate well-localized mother wavelet function
ψ ∈ L2(R3), we define the continuous wavelet transform of f to be
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Wψf(a, t) = a−1
∫
R3

f(x)ψ
(
a−1(x− t)

)
dx,

where a > 0 and t ∈ R3. The analysis functions (wavelets) are ψa,t(x) =
a−1ψ

(
a−1(x− t)

)
.

If f on R3 is smooth except for a discontinuity at x0 ∈ R3, the wavelet
transform Wψf(a, t) decays rapidly as a → 0 everywhere, except where t is
near x0. Hence, the wavelet transform is able to signal the location of the
singularity of f through its asymptotic decay at fine scales.

We discretize the wavelet transform and write ψ̃a(x) = a−1ψ(−x/a),
so that the wavelet transform can be expressed as the convolution product
Wψf(a, t) = f ∗ ψ̃a(t). As a mother wavelet, we use a Sobel-like filter (in-
stead of the Gaussian derivative used in Canny) to estimate the gradient and
repeatedly apply a smoothing matrix to effectively dilate ψ̃ by an amount
dependent on the number of iterations `, obtaining ψ̃`. This means we can
concisely write the implementation as f ∗ ψ̃` for ` = 1, 2, . . . , n`.

Stacking each plane of the filter side-by-side reveals the contents for the
horizontal, vertical, and time filters:

G3D
x =

0 0 0 1 0 −1 0 0 0
1 0 −1 2 0 −2 1 0 −1
0 0 0 1 0 −1 0 0 0

 , (8)

G3D
y =

 0 1 0 1 2 1 0 1 0
0 0 0 0 0 0 0 0 0
0 −1 0 −1 −2 −1 0 −1 0

 , (9)

G3D
t =

0 1 0 0 0 0 0 −1 0
1 2 1 0 0 0 −1 −2 −1
0 1 0 0 0 0 0 −1 0

 . (10)

After the image gradient is estimated using these filters, the wavelet edge de-
tection algorithm repeatedly rescales by convolving the gradient components
with a weighted average filter

G3D
a =

1 1 1 1 2 1 1 1 1
1 2 1 2 4 2 1 2 1
1 1 1 1 2 1 1 1 1

 , (11)

choosing to save either the previous estimate or the new one, depending on
which has smaller magnitude. This is summarized in Algorithm 2. Note that
notation in the description of the algorithm emphasizes the approximate gra-
dient aspects rather than the wavelet aspects.

The conditional re-enforcement in steps 7 and 8 emphasizes edge locations
based on the change between adjacent scales. For both wavelets and shearlets,
the local Lipschitz regularity of a point determines the decay of the magnitude
of the response as a function of scale [17], [7]. The coefficients are likely to
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increase slowly with ` when the Lipschitz regularity is positive (i.e. an edge
point) and increase rapidly when the Lipschitz regularity is negative (i.e. a
noise point). Thus the choice is meant to strengthen the influence of edges
and weaken the influence of noise.

Algorithm 2 The 3D Wavelet Edge Detection Algorithm.

1: Input: Raw image sequence Ĩ and number of levels n`.
2: Output: (∇Ĩ(n`)

x ,∇Ĩ(n`)
y ,∇Ĩ(n`)

t ), estimates of the gradient for each pixel in the
input.

3: Compute the basic horizontal derivative estimate ∇Ĩ(0)x = Ĩ ∗ G3D
x , the basic

vertical derivative estimate ∇Ĩ(0)y = Ĩ ∗G3D
y and the time derivative estimate

∇Ĩ(0)t = Ĩ ∗G3D
t .

4: for level ` = 1, . . . , n` do
5: Compute the horizontal derivative estimate ∇Ĩ(`)x = ∇Ĩ(`−1)

x ∗G3D
a .

6: Similarly, compute the vertical and time derivative estimates ∇Ĩ(`)y and ∇Ĩ(`)t .

7: Modify the horizontal derivative estimate ∇Ĩ(`)x by choosing (for each point

in P) the minimum magnitude component from either ∇Ĩ(`−1)
x or from the

smoothed estimate ∇Ĩ(`)x .
8: Similarly, compute the vertical and time derivative estimates ∇Ĩ(`)y and ∇Ĩ(`)t .
9: end for
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Fig. 7. The support of a 3D shearlet in the frequency domain with a = 1/4 and
s1 = s2 = 0 (left) and a = 1/16, s1 = 0.5, and s2 = 0.7 (right).

3.3 3D Shearlet Edge Detector

In shearlet analysis, we refine the wavelet analysis by, at each level, identifying
components corresponding to different regions in frequency space.

The 3D shearlet transform implementation we have developed, like the 3D
wavelet transform developed here, repeatedly rescales the gradient compo-
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nents, but at each scale it also partitions the frequency domain into a number
of subdomains{

(η1, η2, η3) | η1 ∈
[
−2

a
,− 1

2a

]
∪
[

1

2a
,

2

a

]
,

∣∣∣∣η2η1 − s1
∣∣∣∣ ≤ √2a

4
,

∣∣∣∣η3η1 − s2
∣∣∣∣ ≤ √2a

4

}
. (12)

Each subdomain, illustrated in Fig. 7, is a pair of hyper-trapezoids, symmetric
with respect to the origin, oriented according to the slope parameters s1 and
s2, and more elongated as a→ 0.

Shearlet analyzing functions are defined as

ψa,s1s,2,t(x) = |detMas1s2 |−
1
2ψ(M−1as1s2(x− t))

where

Mas1s2 =

(
a −a1/2s1 −a−1/2s2
0 a1/2 0
0 0 a1/2

)
,

and the mapping
SHψf(a, s1, s2, t) = 〈f, ψa,s1s,2,t〉

defines the continuous shearlet transform of f for a > 0 and t ∈ R3. (See
[9] for a complete description as the technical issues in the construction are
extensive.) The matrix Mas1s2 is a product of a dilation matrix dependent
on a and shearing matrices. Creating filters w3D

d,` whose frequency response
produces the appropriate hyper-trapezoidal restrictions when combined with
a wavelet filtering is done by extending the corresponding 2D filters wd,`
constructed in [29]. The subscript d is an index used to replace the dependency
of the window function on s1 and s2. The integer d ranges between 1 and nd,
where nd indicates the total number of directional components for a scale
we index by `. An additional weighting correction is applied to each w3D

d,`

to guarantee that the summation of all nd components is a delta function.
The continuous shearlet transform of f can then essentially be calculated as
f ∗ (ψ̃` ∗ w3D

d,` ) for ` = 1, . . . , n` and d = 1, . . . , nd. Thus, we can extend our
wavelet transform algorithm to be a shearlet transform algorithm by doing an
additional loop with a convolution dependent on w3D

d,` .

Let Ω be a region in R3 with boundary denoted by ∂Ω and let γj , j =
1, 2, . . . ,m be the smooth boundary segments of ∂Ω, assumed to have positive
Gaussian curvature at every point. If B is a function that is one for every point
in Ω and zero elsewhere, then we know from [9] that:

• If t /∈ ∂Ω, then

lim
a→0+

a−NSHψB(a, s1, s2, s2, t) = 0 for all N > 0.
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• If t ∈ ∂Ω\∪mj=1γj and (s1, s2) does not correspond to the normal direction
of ∂Ω at t, then

lim
a→0+

a−NSHψB(a, s1, s2, s2, t) = 0 for all N > 0.

• If t ∈ ∂Ω\ ∪mj=1 γj and (s1, s2) = (s̄1, s̄2) corresponds to the normal direc-
tion of ∂Ω at t or t ∈ ∪mj=1γj and (s1, s2) corresponds to one of the two
normal directions of ∂Ω at t, then

lim
a→0+

a−1SHψB(a, s1, s2, t) 6= 0.

• If p ∈ γj and (s1, s2) does not correspond to the normal directions of ∂Ω
at t, then

|SHψB(a, s1, s2, t)| ≤ Ca3/2.

The above result essentially says that the continuous shearlet transform
of a bounded region with piecewise smooth boundary has rapid decay every-
where, except when the location variable t is on the surface and the shearing
variables correspond to the normal orientation, in which case it decays like
O(a) as a→ 0.

Our idea is that, at each level, for each shearlet region, we reinforce com-
ponents that seem to be decaying at the proper rate by checking if the mag-
nitude at a given position is between α and α−1 times the previous value.
This comparison method is a significant improvement over the simple com-
parison concept originally conceived in [29] as this reduces thickening of the
nominated edge points and increases efficiency.

Our shearlet edge detection algorithm, summarized in Algorithm 3, re-
sembles the wavelet algorithm, but there is an inner loop at each scale that
enhances the estimated derivative magnitude when an edge aligns with a
shearlet filter w3D

d,` .

3.4 3D Hybrid Wavelet and Shearlet Edge Detectors

Our experimental results show that the 3D wavelet and 3D shearlet edge de-
tectors are quite effective but quite expensive. Therefore, we developed 3D
hybrid wavelet-Canny and 3D hybrid shearlet-Canny edge detectors. These
methods use 2D wavelet or 2D shearlet methods to process each image, pro-
ducing estimates of the x and y derivatives. The time derivative estimate is
then taken from the 3D Canny algorithm. We summarize this process in Al-
gorithm 4. There may be an advantage in averaging the Canny estimate for
each horizontal and vertical derivative with the wavelet or shearlet estimate; if
not, then the algorithm can be made more efficient by omitting the horizontal
and vertical computations in the 3D Canny step.

Similarly, we developed edge detectors based on repeated use of 2D wavelet
(or shearlet) edge detectors to compute 3D estimates as shown in Algorithm 5.

All of these algorithms are economical, and some proved quite effective.
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Algorithm 3 The 3D Shearlet Edge Detection Algorithm.

1: Input: Raw image sequence Ĩ and number of levels n` and parameter α ∈ [0, 1].
2: Output: (∇Ĩx,∇Ĩy,∇Ĩt), estimates of the gradient for each pixel in the input.
3: Compute the basic horizontal derivative estimate ∇Ĩx = Ĩ ∗G3D

x .
4: Similarly, compute the basic vertical and time derivative estimates∇Ĩy = Ĩ∗G3D

y

and ∇Ĩt = Ĩ ∗G3D
t .

5: Precompute the shearing filters w3D
d,` .

6: for level ` = 1, . . . , n` do
7: Compute the horizontal derivative estimate ∇Ĩ(+1)

x = ∇Ĩx ∗G3D
a .

8: Similarly, compute the vertical and time derivative estimates ∇Ĩ(+1)
y and

∇Ĩ(+1)
t .

9: Initialize ∆x = ∆y = ∆t = 0.
10: for direction d = 1, . . . , nd do
11: Add into ∆x any element of ∇Ĩx ∗w3D

d,` whose magnitude is between α and

α−1 times ∇Ĩ(+1)
x ∗ w3D

d,` .
12: Update ∆y and ∆t similarly.
13: end for
14: Add ∆x to ∇Ĩx.
15: Update ∇Ĩy and ∇Ĩt similarly.
16: end for

Algorithm 4 The 3D Hybrid Wavelet-Canny (or Shearlet-Canny) Edge De-
tection Algorithm.

1: Input: Raw image sequence Ĩ and number of levels n`.
2: Output: (∇Ĩx,∇Ĩy,∇Ĩt), estimates of the gradient for each pixel in the input.
3: Compute horizontal and vertical derivative estimates ∇Ĩx and ∇Ĩy by applying

the 2D wavelet (or 2D shearlet) edge detector to each frame in the sequence Ĩ
using n` levels.

4: Compute a time derivative estimate ∇Ĩt by applying the 3D Canny edge detec-
tion algorithm to Ĩ.

3.5 Performance of the Edge Detectors

To illustrate the potential of these edge detectors for tracking moving objects,
we do a simple comparison of their performance. Figs. 8–10 show results for the
fifth frame of the rotating bow-tie movie with various noise levels. The movie
frame is labeled FbF (frame-by-frame), and the results from Canny-2D (C2),
Canny-3D (C3), Wavelet (W2 and W3), Shearlet (S2 and S3), and the hybrid
algorithms (HWC, HSC, HWW, HSS) are also shown. We see that all of the
algorithms are reliable when the SNR is high, but for low SNR, the 3D wavelet
and shearlet algorithms are most reliable. Unfortunately, the algorithms can
produce very broad edge estimates and can lose detail at sharp corners. This
makes it very difficult to determine the precise location of a feature from the
raw output of the edge detectors, so next we consider how to use this output
more effectively in tracking.
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Algorithm 5 The 3D Hybrid Wavelet-Wavelet (or Shearlet-Shearlet) Edge
Detection Algorithm.

1: Input: Raw image sequence Ĩ and number of levels n`.
2: Output: (∇Ĩx,∇Ĩy,∇Ĩt), estimates of the gradient for each pixel in the input.
3: Apply the 2D wavelet (or 2D shearlet) edge detector to each frame (xy slice)

in the sequence Ĩ using n` levels to obtain horizontal and vertical derivative
estimates h1x = ∇Ĩx and h1y = ∇Ĩy.

4: Similarly, apply the 2D wavelet (or 2D shearlet) edge detector to each xt slice
in the sequence to obtain horizontal and time derivative estimates h2x = ∇Ĩx
and h2t = ∇Ĩt.

5: Apply the 2D wavelet (or 2D shearlet) edge detector to each yt slice in the
sequence to obtain vertical and time derivative estimates h3y = ∇Ĩy and h3t =
∇Ĩt.

6: Compute derivative estimates ∇Ĩx = 1
2
(h1x + h2x), ∇Ĩy = 1

2
(h1y + h3y), and

∇Ĩt = 1
2
(h2t + h3t).

Fig. 8. Results of edge detectors on the rotating bow-tie movie, with standard
deviation of noise 0.2. The methods are denoted as Canny (C), Wavelet (W), and
Shearlet (S), 2D and 3D, the original frame (FbF), and Hybrid (H).

4 From Edge Detection to Tracking

A tracking algorithm must determine the trajectory of the track object as it
moves from frame to frame. For simplicity, we consider translation first and
discuss object rotation later.

We tailor our algorithm to our photogrammetric application; since we have
an image of the object to be tracked, we can make use of this information to
avoid any need to identify features, and this is a significant advantage.
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Fig. 9. Results of edge detectors on rotating the bow-tie movie, with standard
deviation of noise 0.6.

Fig. 10. Results of edge detectors on the rotating bow-tie movie, with standard
deviation of noise 1.0.

Assume that we are trying to determine the movement of the object be-
tween two particular frames, frame k−1 and frame k. Assume that the center
of the object in frame k−1 is (i, j). We denote the displacement as ∆xk in the
horizontal direction and ∆yk in the vertical direction and drop the subscript k
when it is clear from context. Our first approach is to perform an exhaustive
search for ∆x and ∆y by considering all possible positions of the patch of
pixels defining the object, and testing to see which trial position best matches



16 David A. Schug, Glenn R. Easley, and Dianne P. O’Leary

the data from the movie. In practice, velocity bounds can be used to limit the
search, and in this study we only test integer displacement values between −2
and 2 for i and j, giving 25 possible positions.

For each trial position, we have two sets of data: D(̃I), which is the data
from the original movie Ĩ, and D(̃Ip), where Ĩp is the movie Ĩ with the kth
frame replaced by one with the patch in its trial position. To find the correct
position of the feature, we want to minimize the difference between the two
sets of data, so we use a cost function

f (̃Ip) = ‖D(̃I)−D(̃Ip)‖. (13)

A natural choice of norm is the square root of the sum of squares of the
elements, but other choices are possible.

We also have a choice of the function D. The most obvious choice is D(̃I) =
Ĩ. In this case f measures how the pixel values change when we replace the
kth frame by the patched frame. Preservation of (noisy) pixel values is not our
objective, however; we want to preserve edges. We propose, therefore, that D
denote the edge image sequence produced by one of our edge detectors. In
this case, f measures how much the edges change between the original movie
and the patched movie. We generate the patched frame in the same way we
generate our test examples, by overwriting pixels in the kth frame by the
patch positioned at (i+∆x, j +∆y).

If the object is also rotating, then we need to measure the cost function at
various values of ∆θ, the change in rotation angle since the previous frame, as
well as ∆x and ∆y. In our experiments, we tested values ∆θ = −2,−1, 0, 1, 2
degrees, making a total of 125 possible positions and rotations per frame.
We found that our methods worked better if we added noise to the patch,
comparable to that in the original movie, before inserting it into the kth
frame of the movie.

We summarize our tracking method in Algorithm 6. There are two impor-
tant observations to be made concerning the cost of the algorithm.

First, increasing the number of possible values of the ∆ quantities quickly
raises the expense of the exhaustive search algorithm. More sophisticated nu-
merical optimization algorithms (steepest descent, Newton-like methods) can
be used, but since our functions are non-differentiable and highly nonconvex,
we did not have much success with them. One advantage of our admittedly
primitive optimization approach is that it is quite easy to parallelize.

Second, there is a very important cost savings to be made. Rather than
running the edge detector on the full image sequence, we can use a smaller
submovie formed from a limited number of frames around frame k and a
limited number of pixels within each frame, those near (i, j), since the effects
on the edge detectors due to introducing the patch are primarily local. Making
use of the submovie greatly reduces the cost of each trial.

From the computed ∆ values, we can compute the magnitude of the planar
velocity of the object at frame k,
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Algorithm 6 Tracking Using Edge Detection.

1: D denotes the output of one of our edge detectors.
2: Input: Image sequence Ĩ with ` frames, noise estimate, patch P, shading vector

g, and initial patch location.
3: Output: Estimates of patch motion ∆x, ∆y, and ∆θ for each frame.
4: Initialize ∆x1 = ∆y1 = ∆θ1 = 0.
5: Add noise to the patch P.
6: for k = 2 : l do
7: Record ∆xk = ∆yk = ∆θk = 0 as the best guess so far.
8: for dθ = −2 : 1 : 2 do
9: Rotate the patch by angle dθ: Pr = imrotate(P, dθ).

10: Compute shaded patch S = Pr. ∗ (gTg).
11: for dx = −2 : 1 : 2 do
12: for dy = −2 : 1 : 2 do
13: The current trial location is the patch location at frame k − 1 plus

(dx, dy).
14: Replace frame k of the image sequence Ĩ with a frame containing the

patch S at the trial location, obtaining Ĩp.
15: if ‖D(̃I)−D(̃Ip)‖ (calculated using the relevant subimage sequence)

is smaller than all previous values for frame k then
16: Set ∆xk = dx, ∆yk = dy, and ∆θk = dθ.
17: end if
18: end for
19: end for
20: end for
21: Replace the patch P by rotating it by ∆θk.
22: end for

|vk| =
√
∆x2k +∆y2k, (14)

and the direction of the planar velocity,

φk = arctan

(
∆yk
∆xk

)
. (15)

However, φk is quite sensitive to errors in ∆xk and ∆yk.

5 Experimental Results

Experiments were conducted to help understand and characterize how well
our edge detectors work in tracking.

We used the difficult case of a spiraling shaded bow-tie with various
amounts of noise added. For each standard deviation of the noise, we replicated
the experiment 4 times, measuring the average error in single-frame tracking
for frames 2 through 26. The results are shown in Figs. 11–13. If the standard
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Fig. 11. Average error in position estimate (unit = pixel) for tracking a spiraling,
rotating, shaded bowtie with noise. The dotted lines indicate the minimum error for
each noise level.
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Fig. 12. Average error in velocity estimate (unit = pixel / frame) for tracking a
spiraling, rotating, shaded bowtie with noise.

deviation of the noise is 0.0, all of the edge detectors yielded perfect track-
ing. As the noise level increased, all algorithms except Canny-2D performed
quite well, but the most reliable algorithms were Canny-3D, Wavelet-3D, Hy-
brid Wavelet-Canny, and Hybrid Wavelet-Wavelet for our particular set of
experiments.

6 Conclusions

We have developed new variants of 3D wavelet- and shearlet-based edge de-
tectors and new hybrid detectors that provide 3D information using only 2D
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Fig. 13. Average error in rotation angle estimate (unit = degree) for tracking a
spiraling, rotating, shaded bowtie with noise.

wavelet or shearlet transforms. We demonstrated the effectiveness of these al-
gorithms for edge detection. Our wavelet edge detectors try to filter noise from
the gradient estimates, while our shearlet detectors reinforce gradients that
change with scale at the expected rate. A variety of other implementations are
possible, and some may perform better than these. All of these methods could
be improved by tuning parameters and by applying standard post-processing
techniques such as nonmaximal suppression or hysteresis thresholding.

We then developed algorithms for tracking objects moving under transla-
tion and rotation, using edge detectors to validate position estimates. All of
the methods tested, except Canny-2D, give low error in position, velocity, and
rotation angle estimates in moderate noise. These methods are well adapted
to particular applications involving rigid motion and flat backgrounds.

Transformations other than translation and rotation could be included
in future work. Expansions and contractions of the patch would account for
movement toward and away from the camera. We could also allow for roll
and yaw of a 3D feature with known shape. Also, by fitting the patch to the
object, our assumption of flat background could be removed.

Acknowledgments. D.P.O acknowledges partial support from the Na-
tional Science Foundation under grant NSF DMS 1016266.
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